Purification engineering technology research center of Sichuan Province Natural Medicine
四川省天然药物分离纯化工程技术研究中心

文献

Zhang G ,Zhao Y ,Ru C , et al.Integrating metabolomics and machine learning to forecast anti-inflammatory and antioxidant activities in D. officinale leaves[J].Chinese Medicine,2026,21(1):8-8.

本文来自:    发布时间:2026-01-21

发表期刊:Chinese Medicine

发表时间:2025

Abstract:

Background

Dendrobium officinale (D. officinale) leaves, rich in bioactive compounds comparable to those in stems, remain underutilized as agricultural byproducts.

Purpose

This study aims to establish an ML (machine learning)-driven metabolomic framework to evaluate seasonal variations in bioactive compounds within D. officinale leaves, identify germplasm-specific pharmacological activities, and determine core components driving anti-inflammatory and antioxidant effects.

Methods

An integrated approach combining dynamic metabolomic profiling (UHPLC-QTOF-MS, RP-HPLC, and UPLC-QqQ-MS), in vitro bioassays (TNF-α/IL-6 suppression assays and ABTS radical scavenging assay), and ML modeling was employed.

Results

Phenolics, flavonoids, terpenes, and B-vitamins peaked in October–November, while amino acids accumulated until December. Despite this, July-harvested leaves exhibited maximum anti-inflammatory and antioxidant activity. Random Forest Regression (RFR) models identified vanillic acid 4-β-D-glucoside, schaftoside, and rutin as key bioactive contributors, validated experimentally.

Conclusion

This ML-enhanced metabolomic strategy advances the quality assessment and germplasm optimization of D. officinale leaves by linking dynamic phytochemical profiles to bioactivity. The identification of July as the optimal harvest period and critical bioactive compounds underscores the approach’s utility in nutraceutical and pharmaceutical applications, promoting sustainable utilization of agricultural byproducts.

https://doi.org/10.1186/s13020-025-01282-z

 


上一篇:没有了

下一篇:Xiang L ,Wang Y ,Shao W , et al.High-throughput profiling of chemica

联系我们

4000-369-963  028-85370565

18080489829@163.com

四川省 成都市 武侯区 武科西二路8号

关于普思

 新闻资讯

研发机构

 服务平台

产品

中药化学对照品

化合物库

热销原料

技术服务

高分辨质谱分析

药物单体纯化

中药创新药

普思生物为您提供中药化学对照品、高纯化学试剂、天然产物化合物库等优质产品,
仅用于科学研究、工业应用等非医疗用途范畴,不可用于人的临床治疗或试验,非药用,非食用。

友情链接:全球化学品供应商搜索   盖德化工网    成都普思生物科技股份有限公司版权所有   蜀ICP备08100078号

在线
咨询

在线咨询服务时间:8:30-17:30

选择客服在线沟通:

咨询
热线

4000-369-963  
7*24小时客服服务热线


028-85370565 / 18080489829 (何女士)

关注
微信

关注官方微信
顶部